ИССЛЕДОВАНИЕ ШЕРОХОВАТОСТИ, МОРФОЛОГИИ, ЭЛЕМЕНТНОГО СОСТАВА ПОВЕРХНОСТИ АДСОРБЦИОННО-ЧУВСТВИТЕЛЬНЫХ СЕНСОРОВ НА ОСНОВЕ СУЛЬФИДА КАДМИЯ

JI. H. $3алюбинская \setminus B.$ H. $Kурков \setminus JI.A.$ $Hигрецкая ^1$, B. A. $Cмынтына \setminus Дж.$ Π аделетти 2

1 Одесский государственный университет им. И. И. Мечникова

Исследована адсорбционная чувствительность сенсоров CdS, сформированных на пленках с разным элементным составом фаз 1:3, 1:1, 3:1. Методом Atomic Force Microscopy (AFM) исследовались морфология и шероховатость указанных пленок. Установлена связь между элементным составом, развитостью поверхности и адсорбционной чувстивельностью этих пленок.

Показано, что адсорбционно-чувствительные элементы на пленках CdS перспективны для мониторинга окружающей среды.

Введение

Задачи по обеспечению экологической безопасности населения не могут быть решены без средств надежного оперативного контроля за состоянием окружающей среды. Самым распространенным и опасным загрязнителем атмосферы является сернистый ангидрид. Это обстоятельство необходимо учитывать при создании элементной базы для мониторинга атмосферы. Наиболее полно современным требованиям оперативного контроля за состоянием атмосферы удовлетворяют полупроводниковые адсорбционно-чувствительные элементы (АЧЭ) для газового анализа, обладающие высокой чувствительностью к различным типам газов

Методика эксперимента

АЧЭ были получены методом электрогидродинамического распыления жидкости с соотношением Cd:S в исходном растворе— 1:3,1:1,3:1 [1]. Исследования адсорбционной чувствительности этих

Таблица

Влияние соотношения Cd и S в растворе для напыления и времени напыления на шероховатость получаемых пленок CdS

Время на- пыления, с	Масштаб	Соотношение Cd:S		
		1:3	1:1	3:1
30	1:10	130,81	166,78	162,00
	1:1	4,076	6,968	3,624
60	1:10	172,49	231,63	202,11
	1:1	19,08	52,76	17,58
180	10	172,75	580,00	245,84
	1	23,61	72,65	44,12

пленок различной толщины к сернистому ангидриду были проведены в атмосфере воздуха и инертного газа (аргона). Состояние поверхности исследуемых пленок оценивалось методом Atomic Force Microscopy (AFM) Приведенные в таблице значения шероховатости поверхности пленок CdS с различным содержанием компонент Cd и S в исходном растворе для напыления этих пленок, получены в результате автоматической обработки снимков поверхности этих пленок в масштабе 1 см² соответствует 10 нм² поверхности исследуемой пленки (масштаб 1:10) и снимков в масштабе 1 см²—1 нм² поверхности исследуемой пленки (масштаб 1:1).

Результаты и их обсуждение

Известно [2], что эффективность работы АЧЭ во многом определяется отношением площади его поверхности к объему, т. е. степенью дисперсности, а также шероховатостью. Однако проведенные методом AFM исследования шероховатости поверхности пленок CdS с различными соотношениями Cd:S не позволяют сделать однозначное заключение об оптимальном соотношении между компонентами Cd и S для обеспечения надежного и оперативного контроля за состоянием атмосферы, содержащей $S0_2$.

На рис. 1 приведены изображения, полученные методом AFM поверхностей пленок CdS с соотношением Cd:S = 1:3, 1:1, 3:1 (столбцы) и различными временами распыления жидкости, т. е. различающиеся по толщине (строки). Наиболее развитой на этих снимках выглядит поверхность пленки с Cd:S = 1:1. Как и следовало ожидать именно такие пленки проявили наибольшую адсорбционную чувствительность (они же проявили максимальную чувствительность к SOJ. Под чув-

² Институт химии материалов Национального Центра исследований Италии, Рим

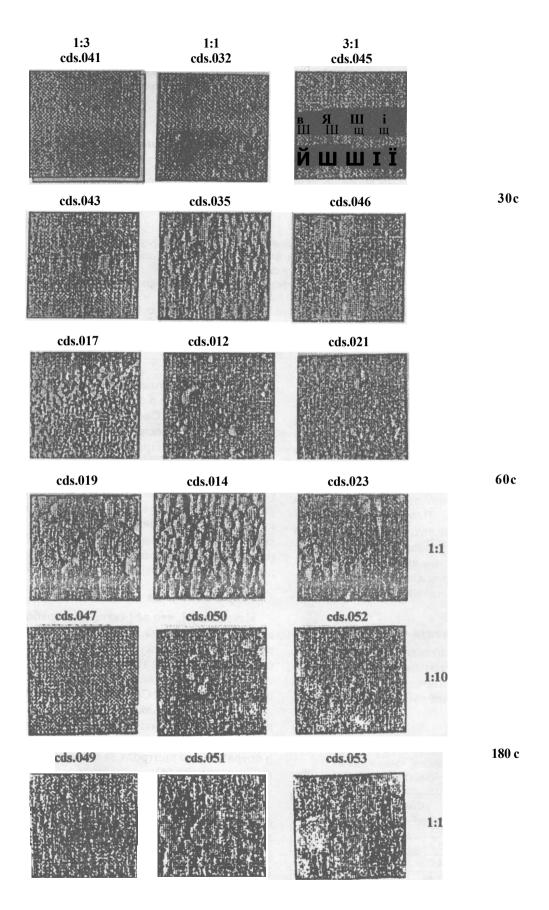
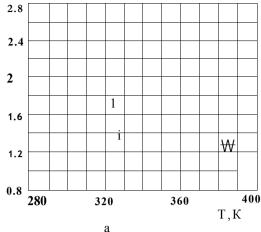
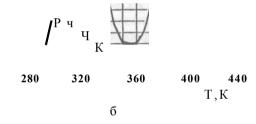


Рис. І. Результаты AFM исследований поверхности пленок CdS, отличающихся элементным составом: 1:3 (041, 043, 017, 019, 047, 049); 1:1 (032, 0,35, 012, 014, 050, 051); 3:1 (045, 046, 021, 023, 052, 053).

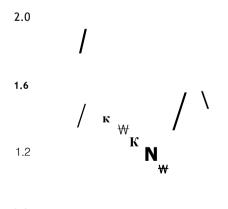
ствительностью понимается отношение проводимости пленки в десорбированном состоянии к проводимости в адсорбированном состоянии. Исходя из того, что в естественных условиях АЧЭ для регистрации $S0_2$ работают в кислородосодержащей среде, исследования их свойств проводились в атмосфере воздуха и аргона. Поскольку кислород и сернистый ангидрид являются газами акцепторного типа, то необходимо создать рабочие условия, позволяющие дифференцировать вклад в адсорбцию каждого из конкурентов. Хотя оба газа, адсорбируясь на поверхности пленки CdS, приводят к уменьшению проводимости, механизмы сорбции у них могут быть различны.


В работе [3] методом масс-спектрометрического анализа при исследовании термодесорбции кислорода с поверхности тонкопленочных слоев CdS обнаружено наличие двух фаз десорбции кислорода: низкотемпературной (300—360 K) с энергией активации 0,9 эВ и высокотемпературной (360—450 K) с энергией активации 1,3 эВ. Как следует из [3] в низкотемпературной области кислород хемосорбируется в молекулярной форме, а при T > 360 K появляется атомарная форма.

Сернистый ангидрид отличается большой термической стойкостью. Диссоциация его не наблюдается даже при 1770 К. Это позволяет предположить, что $S0_2$ адсорбируется на поверхности пленок CdS в молекулярной форме. Большой размер молекул не позволяет им проникнуть вглубь пленки по межкристаллическим прослойкам и адсорбция происходит в основном на свободной поверхности пленок. Следовательно, максимальную чувствительность \mathbf{K} $S0_2$ должны проявлять пленки с максимально развитой (шероховатой) поверхностью


На рис. 2 (а, о, с) представлены температурные зависимости чувствительности пленок CdS к S0₂ на воздухе (кривые la, lb, lc) и в аргоне (кривые 2а, 2Ь, 2с). Концентрация SO₂ в обоих случаях 15 ррш, что примерно в 10⁵ раз меньше, чем концентрация свободного кислорода в атмосфере. Из рис. 2 (а, Ь, с) следует, что во всей исследуемой области температур АЧЭ обладает значительной чувствительностью к кислороду. Причем максимальное ее значение для пленок CdS (1:1 и 3:1) достигалось при 393 К, а для пленок CdS (1:3) при 373 К. При более высоких температурах пленки оказывались нечувствительными к кислороду. Максимальную чувствительность к кислороду проявили пленки CdS (1:1), чего и следовало ожидать из соображений о развитости поверхности. Хотя, как уже отмечалось, это не однозначный фактор, т. к. адсорбционная чувствительность кроме шероховатости зависит от приповерхностного изгиба зон и концентрации центров адсорбции.

Адсорбционная чувствительность пленок CdS к SO, была ниже, чем к кислороду и достигала максимума при температуре 323 К для всех рассмот-



р.отн.сд

р.отн.ед.

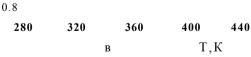


Рис. 2. Температурная зависимость чувствительности пленок CdS κ SO,: а — Cd:S = 1:3; б — Cd:S = 1:1; в — Cd:S = 3:1; кривые 1 — в атмосфере воздуха с SO,; кривые 2 - в атмосфере аргона с SO,

ренных пленок как на воздухе (кривые 1), так и в аргоне (кривые 2). Максимальную чувствительность по отношению к $S0_2$, как и по отношению к кислороду, проявили пленки CdS (1:1).

Сравнение результатов измерений адсорбционной чувствительности, проведенных в аргоне и на воздухе указывают, что при температурах 350—400 К адсорбционная чувствительность обусловлена взаимодействием АЧЭ с кислородом. Влияние кислорода велико при более низких температурах. Однако, четко выраженный максимум при 323 К обеспечивает достаточную селективность АЧЭ на пленках CdS по отношению к S0₂

Интересно повели себя в атмосфере S₀2 пленки CdS (3:1). При температуре 350 К их проводимость снизилась до нуля, а затем начала возрастать, т. е. S0₂ стал оказывать на них донорское воздействие (кривая 2с). Возможно, это обусловлено смещением уровня Ферми ниже уровня, соответствующего энергетической глубине залегания (ЕЈ хемосорбированной молекулы SO₂, что приводит к изменению равновесного состояния между различными формами хемосорбции [2]. Это представляется весьма вероятным для образцов с избыточным содержанием металла, т. к. известно, что избыточный Cd. локализуясь в междоузлиях создает уровни донорного типа. Их высокая концентрация обеспечивает изменение закономерности протекания адсорбционных процессов в пленках CdS (3:1). Зная температуру и величину темнового тока, при которой происходит переход от акцепторного влияния на проводимость CdS к донорскому, можно оценить величину E_a. В нашем случае E_a « 0,47 эВ. Полученное значение находится в хорошем согласии с результатами работы [3]. Следует отметить, что приложенные напряжение не влияло на особенности температурной зависимости адсорбционной чувствительности Р(Т), т. е. решающее влияние на процессы адсорбции и десорбции оказывает температурный режим.

Сравнение зависимостей p(T)> измеренных для АЧЭ различного стехиометрического состава, показывает, что увеличение концентрации серы приводит к понижению чувствительности во всем температурном диапазоне, как для кислорода, так и для сернистого ангидрида (рис. 2a, b, c).

Все приведенные выше сведения по исследованию зависимости P(T) относились к пленкам одинаковой толщины \sim 10^{-5} см (время напыления 60 с). Известно [2], что характеристики АЧЭ существенно зависят от толщины. Действительно, на расстояниях, превышающих дебаевскую длину экранирования (/,), влияние поверхностного заряда перестает существенно влиять на закономерности токопереноса в АЧЭ. Толщина пленки АЧЭ, превышающая /, обладает малым по сравнению с поверхностью удельным сопротивлением, а объем пленки выполняет в этом случае роль шунта, снижая чувствительность пленки к анализируемому газу. Если

уменьшить толщину полупроводниковой пленки до размеров порядка дебаевской длины экранирования, то на количестве поверхностных уровней это не отразится, а количество объемных — снизится. Такое уменьшения толщины пленок увеличит соотношение поверхностных и объемных центров адсорбции, что приведет к повышению чувствительности АЧЭ. Однако, одновременно с этим значительное уменьшение толщины может стимулировать снижение чувствительности из-за усиления роли уровней, принадлежащих поверхности пленки, прилегающей к подложке и из-за слабой шероховатости самой пленки, что можно увидеть в таблице для 1 постыпенны = 30 с.

В таблице приведены сведения о качестве поверхности пленок CdS, отличающихся стехиометрией и времем напыления. Наименее чувствительными оказались самые тонкие пленки ($\sim 10^{-6}$ см). Оптимальными характеристиками для использования в качестве AЧЭ обладали пленки с толщинами $\sim 10^{-5}$ см ($t_{pacnbUieHM}$, = 60 с), что соответствует / $_3$ для CdS. Более толстые пленки ($t_{pacnbraeHI}$,, = 180 с) проявляли чувствительность к кислороду почти такую же, как и более тонкие пленки CdS, но на $S0_2$ они откликались значительно слабее, чем пленки с толщиной $\sim 10^{-5}$ см. Различие в поведении по отношению к кислороду и сернистому газу, по-видимому, обусловлено различными механизмами их сорбции, на что уже указывалось выше.

В области комнатных температур кислород хемосорбируется на поверхности пленки в молекулярной форме. С ростом температуры определяющим становится процесс диссоциации молекул кислорода на атомы с последующей диффузией их вглубь пленки. Таким образом, чувствительность АЧЭ по отношению к кислороду контролируется не только процессами происходящими в приповерхностном слое порядка дебаевской длины экранирования, но и в объеме, куда диффундируют атомы адсорбата. Сернистый ангидрид же адсорбируется в молекулярной форме на поверхности пленки CdS. В этом случае слойтолщиной более 10^{16} см шунтирует поверхность, уменьшая чувствительность АЧЭ на пленках CdS.

Заключение

На основании приведенных экспериментальных результатов можно сделать следующие выволы:

- AЧЭ на пленках CdS являются перспективными для мониторинга окружающей среды;
- Степень шероховатости является важным, но не всегда определяющим фактором для получения высокочувствительных АЧЭ;
- В зависимости от температурного диапазон на АЧЭ на основе пленок CdS могут обеспечить селективность по отношению к 0_2 и $S0_2$;
- Повысив рабочую температуру выше 350 К можно исключить влияние кислорода на чувстви-

тельность, которая в этом случае будет полностью определяться донорным воздействием $S0_2$;

- Оптимальное соотношение Cd:S = 1:1 обеспечивает эффективное преобразование неэлектрического сигнала в электрический в АЧЭ на основе пленок CdS:
- Толщина пленок существенно влияет на адсорбционную чувствительность. Для датчиков на $S0_2$ толщина должна быть »/,, а для кислорода может несколько превосходить /,.

Литература

1. А. с. 890907 (СССР). Способ получения фоточув-

- ствительных пленок сульфида кадмия (А. Комчаков, С. Контуш, В. Сердюк, А. Турецкий, Г. Чемересюк). Опубл. БИ, 1983. № 36. С. 242.
- Смынтына В. А. Электрофизические, фотоэлектрические и электронно-молекулярные явления, стимулированные хемосорбционно-диффузионными процессами на границах полупроводниковых поликристаллических пленок селенида и сульфида кадмия. Дисс... докт. физ-мат. наук. Одесса: ОГУ, 1990. 492 с.
- 3. Голованов В. В. Поверхностная структура и морфология тонких пленок CdS, осажденных методом ЭГДРЖ // Фотоэлектроника 1998. № 7. С. 83—87.